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Abstract

Effects of MHD reconnection events on the beam-plasma fusion reactivity and transport of

the beam ions are studied. Based on the analysis of fusion reactivity changes induced by MHD

events, the conclusion is drawn that the strong drops of the neutron yield during sawtooth crashes

observed in the National Spherical Torus eXperiment (NSTX) [M. Ono et al., Nucl. Fusion 40,

557 (2000)] are associated with both a particle redistribution inside the plasma and a loss of the

beam ions. Mechanisms of the energetic ion transport during sawtooth crashes are analyzed, in

particular, with the use of the resonance adiabatic invariant derived in this paper. A numerical

simulation of the particle motion during a sawtooth crash in NSTX is done with the code OFSEF

[Ya. I. Kolesnichenko et al., Nucl. Fusion 40, 1325 (2000)] extended for a better description of

the particle precession. It is shown that the motion of toroidally passing particles in NSTX can

become stochastic under the influence of a crash. This stochasticity, as well as the motion along

the resonance island, leads to the escape of some particles from the plasma.

PACS numbers: 52.20.Dq; 52.25.Fi; 52.35.Py; 52.55.Hc
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I. INTRODUCTION

Various forms of MHD activity affecting plasma performance were observed in Spherical

Tori (ST). In particular, experiments on the National Spherical Torus eXperiment1 (NSTX)

show that bursts of MHD events, such as sawtooth oscillations, Internal Reconnection Events

(IRE) etc., result in strong, by a factor of two, drops of the neutron yield and signals on

the Neutral Particle Analyser (NPA).2 Similar strong reduction of the neutron flux may also

occur during quasi-steady-state MHD activity, but then the neutron yield decreases much

slower. As it is the beam-plasma fusion reactions that mainly contribute to the neutron

production, the mentioned facts indicate that the beam ions are strongly influenced by

MHD activity. Therefore, a study of the energetic ions transport and concomitant change of

the neutron yield in MHD-active plasmas of spherical tori is of large practical importance. In

addition, the mentioned experiments have actually raised fundamental questions concerning

physical mechanisms responsible for the observed phenomena. The purpose of this work is

to make an attempt to elucidate the involved physics.

The structure of the work is as follows. Section II deals with the change of the beam-

plasma fusion reactivity during MHD events. Various patterns of the particle redistribution

caused by a single crash are studied; the effect of multiple crashes is also considered. In

Sec. III, mechanisms of the influence of the crash on the energetic ions are analyzed, and

peculiarities of the crash-induced transport in STs are discussed. The motion of beam ions

in the presence of a magnetic perturbation relevant to a nonlinear stage of the Kadomtsev-

type sawtooth crash in a particular NSTX shot is studied in Sec. IV. The calculations

are carried out with the code OFSEF3 (Orbit Following in the Sawtooth Electromagnetic

Field) extended to model the precession of the toroidally passing particles in a non-circular

plasma with finite β (β is the ratio of the plasma pressure to the magnetic field pressure).

The results of the paper are summarized in Sec. V. Finally, the appendices contain some

material used in the analysis carried out. Appendix A contains information on the particle

motion in a particular NSTX shot, the results being obtained with the code ORBIT.4,5 The

derivation of a resonance adiabatic invariant of the particle motion is given in Appendix B.
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II. MHD-EVENT-INDUCED CHANGE OF THE BEAM–PLASMA FUSION RE-

ACTIVITY

A. Effect of multiple crashes on the energetic ion population

Sawtooth oscillations and other reconnection events typically manifest themselves as re-

laxation oscillations of the plasma parameters. They are usually characterized by two phases,

a fast phase (crash) and a slow phase (relaxation). The crash can sharply expel the energetic

ions from the plasma core, leading to a change of the neutron yield of the beam–plasma re-

actions. When the relaxation time is about or less than the energetic ion slowing-down time,

the influence of multiple crashes on the energetic ions considerably exceeds the influence of

a single crash. In the contrary case, the effect is determined mainly by a single crash.

In order to see it, we note that the density of the energetic ions produced by some source

switched on at the moment t = 0 in the absence of MHD events is given by (we assume that

slowing down is the only process providing the sink of the energetic ions)

nb(t) = n∞

[
1− exp

(
− t

τs

)]
+ n0 exp

(
− t

τs

)
, (1)

where n0 and n∞ are the initial density and the steady-state density of the energetic ions

in the absence of MHD activity, respectively, τs is the particle slowing-down time. Using

Eq. (1) and assuming that all the crashes are identical, we can write the following equations

for two subsequent crashes:

n+
2 = n+

1 ,
n+

2

n−2
= δs, n−2 = n∞

[
1− exp

(
−∆

τs

)]
+ n+

1 exp

(
−∆

τs

)
, (2)

where n+
1 is the energetic ion density after the first crash, n−2 and n+

2 are the energetic ion

densities immediately before and after the second crash, respectively, ∆ is the time between

the crashes, δs is the particle density change induced by a single crash. Equations (2) yield:

n+
2

n∞
= δs

1− exp (−∆/τs)

1− δs exp (−∆/τs)
. (3)

We observe that n+
2 /n∞ ¿ δs for ∆ ¿ τs, and n+

2 /n∞ ≈ δs for ∆ À τs.

Note that when ∆ ¿ τs, multiple crashes affect not only the density of the energetic ions

but also the velocity distribution of these ions. As was shown,6 the distribution function,

f(v), becomes a saw-like function having sharp gradients (see Fig. 4 in Ref. 6). The reason
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for this is that the distribution function in the case of ∆ ¿ τs retains the “memory” of

multiple displacements of a given plasma volume from the plasma core to the periphery and

back by repeating sawtooth events.

B. Effect of a single crash: model of particles attached to flux surfaces

In general, an MHD event affects the beam-plasma fusion reaction rate (fusion reactivity)

and, thus, the neutron yield in two ways. First, it redistributes the beam and plasma

particles and, second, it leads to particle loss. In conventional tokamaks, the core-localized

MHD activity (such as sawtooth oscillations) typically results in a small loss of energetic

ions. This may not be the case in STs. In particular, the neutron yield and NPA signals

in experiments on NSTX strongly drop during IRE and sawteeth.2 Unfortunately, it is not

clear whether these changes are a result of particle loss and/or their strong redistribution

within the plasma (there is only one NPA line of sight, which does not allow making a

tomographical reconstruction of the post-crash picture). Therefore, it is of importance to

evaluate the change of the fusion reactivity in the absence of the particle loss in order to see

whether the redistribution itself can explain the observed drops of the neutron yield. This

will be done below.

The local beam-plasma fusion reaction rate, IL, can be written in the following form:

IL =

∫
fb(r,v)fi(r,v

′)σ(|v − v′|)|v − v′| d3v d3v′ ≈ ni(r)

∫
fb(r,v)σ(v)v d3v

≡ ni(r)nb(r)〈σv〉bi, (4)

where f(r,v) is the particle distribution function, subscripts i and b refer to the bulk plasma

ions and the beam ions, respectively, σ is the cross section of the fusion reaction, nj with

j = b, i is the particle density, 〈σv〉bi =
∫

d3v fbσv/nb with nb =
∫

d3v fb. Below we assume

that 〈σv〉bi depends only on the energy of the injected ions. This can be justified as follows.

The cross-sections of both DD and DT reactions are growing functions of energy in the

region of interest (below 100 keV). On the other hand, in STs the beam energy, Eb, typically

satisfies the condition Eb À E∗ ∼ (Mb/Me)
1/3Te (Te is the electron temperature, M is the

particle mass), E∗ in current experiments on NSTX being 20− 40 keV. Therefore, Coulomb

collisions between the beam ions responsible for fusion reactions and the bulk plasma ions

are negligible. Thus, we can take fb ∝ E−3/2 for E À E∗ (see, e.g., Ref. 7) and neglect
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the pitch-angle dependence on r in fb. Finally, neglecting the finite orbit width effects, we

approximate the beam distribution function as fb = nb(r)F (v) and obtain that 〈σv〉 does

not depend on the space coordinates.

Note that the assumption that the particle orbit width is small, which we have used,

is justified provided that ∆rb ¿ rmix, where ∆rb is the particle orbit width, rmix is the

mixing radius of the MHD activity. When this is the case, the particle redistribution is

the strongest. In STs, rmix can be rather large because in many cases rs ∼ a/2 (rs is the

radius of the q = 1 surface, a is the plasma radius) and rmix ∼ 1.3rs. Therefore, in STs

the mentioned condition is satisfied for the thermal ions and the beam ions with the energy

E >∼ Ti, where Ti is the bulk ion temperature. However, it can hardly be satisfied for the

most energetic injected ions (E ∼ 80 keV). Nevertheless, in order to evaluate the maximum

possible effect of the redistribution, we assume that the condition ∆rb ¿ rmix is satisfied for

all particles and neglect the orbital effects. Then the relative change of the fusion reactivity

is completely determined by the particle density before and after the reconnection event.

In NSTX experiments the change of the global (rather than local) neutron yield is known.

Therefore, below we analyze the change of the global beam-plasma fusion reactivity, IG.

Using Eq. (4), we write:

δIG ≡ I+
G − I−G

I−G
=

∫ xmix

0
dx (n+

b n+
i − n−b n−i )∫ xa

0
dxn−i n−b

, (5)

where IG =
∫

d3r IL, x = r2/r2
s , xmix = r2

mix/r
2
s , the superscripts “+” and “−” label the

magnitudes before and after the MHD event, respectively. In order to know the post-crash

radial profiles, we have to specify the character of the MHD activity and its effect on the

particle transport.

We consider an event accompanied by the reconnection of magnetic field lines. In this

case, the process can be described by the Kadomtsev model of the sawtooth crash.8 Ad-

mittedly, the mentioned model predicts that the post-crash central safety factor, q+
0 , equals

to unity, which often contradicts to experimental data. There exists also another model

based on the same idea of complete reconnection during the crash, which is consistent with

experiments with q+(0) < 1.9 However, the model9 leads to a smaller change of the neutron

yield (although it provides stronger redistribution of the particles).10 Therefore, to evaluate

the maximum possible change of the neutron yield, we will use the Kadomtsev model.

In this subsection, we assume that both beam and plasma ions are redistributed by the
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crash because they are attached to the evolving flux surfaces. Then we can express δIG in

terms of the radial profiles of ni and nb inside the q = 1 radius before the crash as follows:10

δIG = −
∫ 1

0
dx−1 (n−b1 − n−b2)(n

−
i1 − n−i2)V2/(V1 + V2)∫ xa

0
dx− n−b n−i

, (6)

where the subscripts “1” and “2” are relevant to the regions r < r−s and r > r−s , respectively,

V1,2 = |ι(x1,2) − 1|−1 are the effective volumes of the layers inside and outside r−s involved

to the reconnection process, xa = a2/r2
s , n−1 ≡ n(x−1 ), n−2 ≡ n(x−2 ), x−2 = x−2 (x−1 ), the

function x−2 (x−1 ) is determined from the condition that the magnetic reconnection mixes the

particles located at the radii with the same magnitude of the helical magnetic flux (ψh), i.e.,

ψh(x
−
2 ) = ψh(x

−
1 ) with ψh(r) = R0

∫ r

0
Bp(1 − q)dr (Bp is the poloidal magnetic flux, R0 is

the large radius of the torus) in the axisymmetric states before and after the crash.

To find the dependence of x−2 on x−1 , we take the safety factor (or the rotational transform,

ι = q−1) before an MHD event in the form:

ι(x−1,2) ≡
1

q(x−1,2)
= 1 + Υ1,2(1− x−1,2), (7)

where

Υ1 = ι−0 − 1, Υ2 =
1− ιa
xa − 1

, (8)

with ιa ≡ ι(a). When q(r) is given by Eq. (7), we have:

x−2 = 1 + (xmix − 1)(1− x−1 ), V2 = (xmix − 1)V1, xmix = 1 +

√
Υ1

Υ2

. (9)

Equation (7) can provide a reasonable approximation for the safety factor profile in NSTX

shots. In particular, when Υ1 = 0.11, Υ2 = 0.39, and r2
s/a

2 = 0.3, it yields q0 = 0.9,

qa = 10, and the q(r) profile close to that in the NSTX shot #104505 (where sawtooth

crashes strongly affected the beam ions). Note that in the considered case the sawtooth

mixing radius determined by Eq. (9) is xmix = 1.53.

Using Eq. (9) and taking

nb,i =

(
1− x

xa

)νb,i

, (10)

we find:

δIG ≈ −νbνi(νb + νi + 1)
xmix(xmix − 1)

3x3
a

. (11)

This expression was obtained in the assumption that nb,p(x) can be approximated as

nb,p(x) = nb,p(0) + n′b,px with n′ = dn/dx|x=0. We observe that, as expected, δI grows
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with rmix. A simple analysis shows that it grows also with rs in all cases of interest: the

function y(rs) ≡ xmix(xmix − 1)/x3
a has a maximum in a point very close to a (for instance,

the maximum is located at rs ≈ 0.9a for Υ1 = 0.11 and Υ2 = 0.39). However, these results

are valid only for relatively flat profiles, |n′jxmix/nj(0)| < 1, which in the particular case of

the safety factor given by Eq. (7) with the parameters mentioned above leads to νj
<∼ 2.

Taking νb = 2 and νi = 0.5 − 1, we obtain from Eq. (11) that δIG = 2.5 − 5.8%. However,

the beam profile is often more peaked (νb > 2). Therefore, we consider the contrary limit

case, taking nb ∝ δ(x). Then one can easily obtain from Eqs. (6) and (10) that (cf. Ref. 10)

δIG = −xmix − 1

xmix

[
1−

(
1− xmix

xa

)νi
]

. (12)

Equation (12) leads to |δIG| = 9% for νi = 1, and |δIG| = 16% for νi = 0.5, which is still

much less than the drops of the neutron yield observed experimentally on NSTX.

C. Effect of a single crash: model with the energetic ions not sensitive to the

crash

It is known that most trapped particles with the energy exceeding a certain critical

magnitude, E trapped
crit , are not sensitive to the reconnection events unless β is very large (the

marginally trapped particles are an exception).11 The critical energy is given by3,12

E trapped
crit = 2πMksrsR0ωB/τcrash, (13)

where τcrash is the crash duration, k is the elongation of the plasma cross-section, the sub-

script s labels the values at the q = 1 surface, ωB is the particle gyrofrequency. One can see

from Eq. (13) that the magnitude of the critical energy in STs is rather low. Therefore, the

population of well-trapped energetic ions is not sensitive to the reconnection events in the

discharges with moderate β (β(0) < rs/R0) relevant to current experiments on NSTX. Thus,

it may be of interest to calculate the change of the neutron yield in the assumption that

the bulk plasma ions are redistributed according to the Kadomtsev model of the sawtooth

crash, whereas the energetic ion population is not redistributed.

One can show that the pre-crash coordinates can be expressed through the post-crash

coordinates in the Kadomtsev model as follows:

x−1 = 1− x+

xm

, x−2 = 1 + x+

(
1− 1

xmix

)
. (14)
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Using these equations, we obtain the following post-crash profile of the bulk ions having the

pre-crash profile given by Eq. (10):

n+ =
n0

xmix

([
1− 1

xa

(
1− x+

xmix

)]νi

+ (xmix − 1)

{
1− 1

xa

[
1 + x+

(
1− 1

xmix

)]}νi
)

.

(15)

Below we take ν = 1, in which case

n+ = n0

[
1− 1

xa

+

(
2

xmix

− 1

)
x+

xa

]
. (16)

Now we can calculate the change of the neutron yield:

δIG =
νb + 2

νb + 1

(
2

xmix

− 1

xa

) (
1− xνb+1

am

)− 2

xmix

(
1− xνb+2

am

)
, (17)

where xam ≡ 1− xmix/xa. It follows from Eq. (17) that the drop of the neutron flux grows

with ν (vanishing for νb = 0). When νb →∞

δIG → − 1

xa

, (18)

which for the safety factor used above yields δIG = −30%. However, the change of the

neutron flux for realistic beam distributions is considerably less. For instance, taking νb = 6,

we obtain δIG = 17%.

D. Effect of a single crash: model with flat post-MHD profiles

The analysis above was made in the assumption that a sawtooth crash of the Kadomtsev

type occurs and either only the plasma or both the beam and the plasma are attached to

the flux surfaces. Below we make an estimate which does not depend on the character of

the MHD event. The main assumption we need is that the MHD event strongly mixes, at

least, one component of the beam-plasma system, so that n+
b (r) = const or n+

i (r) = const

or the particle densities of both the beam and plasma are flat immediately after the MHD

event. This may be the case, e.g., when the energetic ions are redistributed by the MHD

event inside the mixing radius but reach the plasma edge due to their finite orbit width.

Furthermore, the assumption that nj(r) = const is justified even when the MHD event

results in a flat radial profile of the plasma/beam particles only at r < rmix, provided that

rmix is so large that the neutron production in the periphery region, r > rmix, is negligible.
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Let us introduce the particle number Nj =
∫ a

0
dxnj(x) and assume that n+

b (r) = const.

Then, using Eq. (4), we obtain:

I+
G

I−G
=

N+
b N+

i

xa

∫ xa

0
dx− n−b n−i

. (19)

Note that this expression is symmetric with respect to the subscripts b and i; therefore, it is

valid not only for n+
b (r) = const but also for n+

i (r) = const. If the number of the particles

is conserved, Eq. (19) determines the drop of the neutron yield, provided that the pre-crash

profiles are known.

Let us assume that N+
i = N−

i (an MHD event perturbs only the plasma core, thus

producing no loss of the thermal ions), but we will not specify N+
b . Then, taking the radial

profiles in the form given by Eq. (10), we obtain:

N+
i = n−i (0)xa/(νi + 1), (20)

∫ xa

0

dxn−b n−i = N−
b ni(0)

νb + 1

νb + νi + 1
. (21)

Using these equations, we find that

I+
G

I−G
=

N+
b

N−
b

(νb + νi + 1)

(νb + 1)(νi + 1)
. (22)

Equation Eq. (22) shows that, as in the cases described in the previous sections, the largest

drop of the neutron yield occurs when the beam ions have a very peaked pre-crash profile.

For νb →∞ we have:
I+
G

I−G
=

N+
b

N−
b

1

(νi + 1)
, (23)

It follows from Eq. (23) that I+
G/I−G = 0.5 for N+

b = N−
b and νi = 1. This corresponds

to the change of the neutron yield observed in NSTX. However, this estimate was obtained

for unrealistic assumptions on the particle profiles. For any realistic profiles we have to use

Eq. (22). Taking again I+
G/I−G = 0.5 and assuming νb = 6, νi = 0.5, we obtain from Eq. (22)

that N+
b /N−

b = 0.7, which implies that 30% of the beam ions are lost.
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III. MECHANISMS OF THE PARTICLE REDISTRIBUTION DURING MHD

EVENTS

A. Qualitative analysis

The sawtooth effect on fast particles in conventional tokamaks has been extensively stud-

ied both experimentally and theoretically (see, e.g., the review in Ref. 3 and references

therein). The results of theoretical works3,12–15 can be briefly summarized as follows. The

sawtooth-induced particle redistribution is a result of competition of several processes. First,

the electric field associated with the plasma flow tends to move any particle together with the

flow. The characteristic time of this motion is τcrash, the sawtooth crash duration. Second,

the toroidal precession tends to move a particle so that its radial coordinate, r, is constant

and, hence, to prevent the particle redistribution. Third, the longitudinal motion tends to

move particles along the displaced flux surfaces. The characteristic time of this motion is

the period of the particle trip around a flux surface,

τL =
2πR0

〈v‖〉|q−1
0 − 1| , (24)

where v‖ is the particle velocity along the magnetic field, and q0 the safety factor at the

axis. (Here we restrict ourselves to considering “conventional” sawteeth caused by m =

n = 1 perturbations, where m and n are the poloidal and toroidal mode numbers, although

sawteeth arising due to perturbation with different values of m and n can be considered in

the same approach.) The resulting particle motion depends on the relative characteristic

times of the three processes, which, in turn, depend on the particle energy and pitch angle.

The passing particles with the orbit widths less than rmix are typically characterized by fast

longitudinal motion and relatively slow precession; therefore, they are strongly redistributed

by a crash. The longitudinal motion of the trapped particles is negligible. Therefore, the

intensity of their redistribution depends on their energy: When the energy exceeds the

critical value determined by the condition τcrash = τpr, where τpr is the precession period,

[which leads to Eq. (13)] the precession is fast enough to prevent the redistribution.12,13

Finally, the precession and bounce periods of the particles with large orbit widths (∼ rmix)

are typically of the same order of magnitude. Therefore, the precession is able to prevent

the redistribution, and such particles can be redistributed only due to resonances between

their precession and bounce motion.14,15
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Low aspect ratio and strong plasma diamagnetism in spherical tori modify this pat-

tern. First, in high-β plasmas of modern spherical tori, the particle precession has a strong

diamagnetic component. When the magnetic configuration is perturbed by a crash, this

component tends to move particles along the surfaces of constant pressure, which are the

displaced flux surfaces; therefore, it promotes the particle redistribution instead of pre-

venting it.11 Second, the relative magnitudes of the characteristic times of the mentioned

processes are quite different. Let us consider 80-keV passing injected deuterons in NSTX.

Assuming that |q−1 − 1| ∼ 0.1, v‖/v = 0.8, R0 ∼ 100 cm, we find: τL ∼ 3 × 10−5 s.

For a parabolic pressure profile the diamagnetic precession period can be estimated as [see

Eq. (31)] τdia ∼ 2πa2/(vρ⊥β0) ∼ 10−4 s, where ρ⊥ = v⊥/ωB, ωB is the deuteron cyclotron

frequency, a = 68 cm, B0 = 0.3 T, and β0 is β at the magnetic axis, which is taken to be 11%

for this estimate. The period of the “conventional” precession caused by toroidicity can be

estimated as16 [see Eq. (A1)]

τpr =
2πR2

0

ξvρ
∼ 10−5 s, (25)

where ρ = v/ωB, and ξ is a certain dimensionless parameter determined by the pitch angle

and properties of the magnetic configuration, which was assumed to be ∼ 1 for this estimate.

As τcrash ∼ 10−4 s in most tokamaks (unfortunately, we have no such data concerning spher-

ical tori yet), we observe that the precession, which prevents the particle redistribution, is

faster than the rest of factors. Hence, in contrast to conventional tokamaks, the passing

fast deuterons in NSTX are not expected to follow the evolving flux surfaces, and one needs

to involve some resonance phenomena to explain their redistribution or loss. However, this

conclusion may be wrong for particles with lower energy. In general, one can conclude that

τpr, τL ¿ τdia, τcrash.

Therefore, the general pattern of the motion of passing particles is determined mainly

by the competition of longitudinal motion and precession. As the energy dependence of the

characteristic times of these processes is different, τL ∝ E−1/2 and τpr ∝ E−1, we recover

the conclusion12 that there exists a critical energy for the redistribution of passing particles,

Epassing
crit , determined by the relationship τL = Aτpr, where A is a dimensionless constant

determined by the process geometry. Our calculations presented below (Subsec. III B) show

that A ≈ 1/8. The particles with the energy below the critical one are strongly redistributed

during the crash, whereas for higher energies the crash affects mainly the particles within
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the resonance island. From Eqs. (24) and (25) we obtain:

Epassing
crit =

M

2

(
R0ωB0

8ξ
〈χ〉|q−1

0 − 1|
)2

, (26)

where χ = v‖/v, 〈. . .〉 denotes bounce averaging. In particular, Epassing
crit = (〈χ〉|q−1

0 − 1|/ξ)2 ·
50 keV in NSTX. Thus, the energy of the ions responsible for the neutron yield considerably

exceeds both E trapped
crit and Epassing

crit when |ξ| >∼ 0.2. This means that these particles can be

redistributed only due to resonance effects.

One can assume a priopi that the motion of passing particles during a sawtooth event

is determined to a large extent by the resonance ωφ/ωθ = 1/1, where ωφ and ωθ are the

frequencies of the poloidal and toroidal motion, respectively: ωφ ≈ ωθ for most circulating

particles in the region of sawteeth, and the m = n = 1 harmonic dominates in the sawtooth

instability. This resonance is likely to form resonance islands near the resonant drift surface,

which will cause redistribution of particles or even loss if the island reaches elements of the

device hardware. Even some particles outside the island can be lost because of the distortion

of their drift surfaces by the perturbation.

However, as we will see in Sec. IV, the particle motion is stochastic in many cases. The

main difficulty with understanding the origin of such stochasticity is that ωφ/ωθ = s/n is

typically slightly below unity in the central part of the plasma (see Fig. 6). Therefore, to

explain the appearance (and subsequent overlap) of resonance islands, one has to involve

resonances ωφ/ωθ = s/n with n À 1, which, in turn, require perturbation harmonics with

the toroidal number n À 1 to be present. One possible mechanism of the realization of

such resonances is the appearance of higher harmonics of the perturbation on the nonlinear

stage (in particular, sideband resonances ωφ/ωθ = s/n with the harmonics m = n 6= 1

are possible14). Another possible mechanism is associated with the fact that particles with

small poloidal action undergo relatively large radial displacements under an m = n = 1

perturbation. As a result, additional Fourier harmonics appear in the Fourier spectrum of

the perturbation in the canonical coordinates associated with the displaced drift surfaces.

This can cause global stochasticity when the perturbation exceeds a certain critical level.15

One can expect that relatively high diamagnetism in spherical tori will provide an addi-

tional mechanism of the particle motion stochasticity. The matter is that a plasma redistri-

bution in this case is accompanied by a noticeable variation of the magnetic field strength

(i.e., the longitudinal component of the magnetic perturbation is not small). The magnetic
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reconnection, in particular, will create large pressure gradients on the boundaries of the

reconnected and unreconnected plasma. The effect of such a perturbation on the particles

that cross these boundaries owing to their orbital motion and/or precession will consist in

transversal “kicks” of the ∇B drift. As the Fourier spectrum of such perturbations of the

particle motion is very rich, one can expect the appearance of numerous islands of resonances

ωφ/ωθ = m/n with large numbers m and n. The numerical calculations taking account of

the effect of the large pressure gradients arising during a magnetic reconnection indeed show

that finite β increases the region of stochasticity.17

B. The 1/1 resonance

We begin with studying the bounce-averaged resonant motion, using the adiabatic in-

variant of the resonant motion. The drawbacks of the bounce-averaged description are that

it enables one to study only a chosen single resonance and that stochastic motion can be

detected only indirectly, from the overlap of different resonances. Nevertheless, it gives a

possibility to evaluate the resonant response of particles much easier. The invariant that we

will use is derived in Appendix B. It is a generalization of a previous result18 to the case of

perturbations affecting the magnetic field strength, B (see also Ref. 19).

We will assume that the crash duration is sufficiently large and the perturbation fre-

quency is sufficiently small to consider the perturbation as static when studying the particle

motion (our estimates in Subsec. IIIA partly justify this assumption). Then, as shown

in Appendix B, the guiding-center motion near the 1/1 resonance possesses the following

adiabatic invariant:

I(v, µ, Jφ, φ) = Jθ + Jφ

+
1

2π

∮

L(v,µ,Jφ,φ)

[
dx ·

(e

c
Ã + M

v‖
B

B̃−M
v‖
B2

BB̃
)
− dt (µB̃ + eΦ)

]
, (27)

where A and Φ are the vector and scalar potential of the electromagnetic field; tildes refer

to the perturbation; x is the location of the guiding center; Jφ is the canonical angular

momentum; the poloidal action Jθ is defined by

Jθ(Jφ, v, µ) =
1

2π

∮
dx ·

[
e

c
A(x) +

Mv‖
B

B(x)

]
, (28)

the integration in Eq. (28) being performed along the poloidal contour Jφ = const, v = const,

µ = const. The contour L(v, µ, Jφ, φ) in Eq. (27), along which the perturbation is integrated,
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is the unperturbed trajectory of a particle with the given magnitudes of v, µ, and Jφ with

the toroidal frequency “corrected” to satisfy the resonance exactly [to make L(v, µ, Jφ, φ) a

closed loop], i.e.,

v|L = v|0 + (ωθ − ωφ)∇φ, (29)

where the subscripts “L” and “0” refer to the loop L and the actual unperturbed trajectory,

respectively. The integral in Eq. (27) depends on the toroidal position of the loop L. For

definiteness, we assume that L(v, µ, Jφ, φ) starts from that point in the equatorial plane of

the torus (θ = 0 or π) with the toroidal angle φ which is at the maximum distance from the

axis of symmetry (R).

When the perturbation is steady-state or varies sufficiently slowly, the bounce-averaged

trajectories of particles coincide with the level contours of the invariant given by Eq. (27).

As discussed below, the crash duration in NSTX well exceeds the characteristic times of the

motion of the passing particles. Thus, we can use the invariant to study the effect of the

1/1 resonance on the motion of such particles.

Assuming that the crash is caused mainly by an m = n = 1 electromagnetic perturbation,

we write the vector potential of the perturbation as follows:

Ã = −Ψh(r, α)∇φ− F (r, α)∇α, (30)

where α = θ − φ, Ψh is the helical magnetic flux responsible for the transversal part of

the perturbation (the flux surfaces under the perturbation are the level surfaces of Ψh), F

describes the diamagnetic perturbation of B and is determined by Ψh and the pre-crash

distribution of p. To model Ψh, we use the analytical expressions suggested in Ref. 12,

which describe the configuration evolving in agreement with the Kadomtsev model8 of the

sawtooth crash. Concerning the diamagnetic perturbation, we assume that it is “attached”

to Ψh (see Ref. 11 for details).

We assume that the projection of the integration loop given by Eq. (29) onto the plane

(r cos α, r sin α) can be approximated by a circle with the radius ∆r, where ∆r = vD/(kωθ)

is the radial excursion of a particle orbit. One can show that the projections of the orbits

of well circulating particles indeed have this shape in the central region of the plasma. At

the periphery the orbit shape is more complicated, but one can expect that this simplifying

assumption does not affect our results strongly. Thus, the problem is reduced to averaging

the perturbation over circles in the plane (r cos α, r sin α) and drawing the level contours
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of the resulting function. This is still too cumbersome to be done analytically for the

perturbation model we use, but the numerical realization of this scheme is fast and simple.

Using this method, we have studied the dependence of the particle motion on parameters.

The general pattern of the motion turns out to depend mainly on the relative magnitudes of

the precession and longitudinal terms in Eq. (27). Figure 1 shows the drift surfaces during

a Kadomtsev reconnection for two different magnitudes of ξ. For ξ = −0.01 [Fig. 1 (a)],

which corresponds to A ≡ τL/τpr = 0.02, the perturbed drift surfaces almost coincide with

the flux surfaces. Just as the latter, they are reconnected during the crash, which results in

a redistribution of the particles inside the sawtooth mixing radius, but the particles orbits

at the periphery are almost not affected. The 1/1 resonance island almost coincides with the

magnetic island and covers the plasma center. The opposite limit case of strong precession

is shown in Fig. 1 (b) (ξ = −0.2, A = 0.4). Here the deviations of the particle orbits from

r = const are much less, but the 1/1 resonance island has shifted outwards. For A ≈ 1/8 the

1/1 resonance island marginally reaches the plasma center. It is reasonable to consider that

this corresponds to the critical energy of passing particles, as was assumed in Subsec. IIIA.

To study how the particle redistribution is affected by diamagnetism, we have made

similar calculations with χ varying between 0.6 and 1 and β0, between 0 and 0.3. We have

found that the dependence of the island width on these parameters is negligible, although

the displacement of the central drift surfaces is sensitive to β0.

The dependence of the bounce-averaged particle motion on the orbit width also turned

out to be weak as long as the orbit width is less than the mixing radius.

A general conclusion from this analysis is that regular motion due to the 1/1 resonance

flattens the radial profile of beam ions. It can lead to significant losses of beam ions during

sawteeth when the island width and the mixing radius are sufficiently large.

IV. NUMERICAL STUDY OF THE SAWTOOTH-CRASH-INDUCED MOTION

OF THE BEAM IONS IN NSTX

In this section we study the influence of sawtooth crashes on the beam ions in a particular

NSTX shot. We have selected the shot #104505, where several MHD events were observed,

some of which were accompanied by strong drops of the NPA signals (the measured particle

energies were 70 keV, 53 keV, and 45 keV) and the neutron flux.2 As was shown above, such
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strong drops (50% and more) are evidences of the strong influence of the MHD events on

beam ions. The earliest two events (at t1 ≈ 0.16 s and t2 ≈ 0.19 s), most probably, can

be identified as sawtooth crashes rather than IRE, which is confirmed by the absence of

noticeable current spikes and the availability of n = 1 signals in Mirnov spectrograms. The

crashes occurred during steady-state Neutral Beam Injection (NBI) of 80-keV deuterons

when q0 was slowly decreasing. The q(r) profiles calculated by the code TRANSP20 for

instants preceding the two crashes (t = 0.155 s and t = 0.185 s) are given in Fig. 2.21 We

observe that q0 is above unity (q0 = 1.2) before the first crash and slightly below unity

(q0 = 0.99) before the second one, which seems to contradict the identification of the two

events as sawteeth. However, the uncertainty in the reconstruction of q0 by TRANSP is

rather high. Therefore, we suppose that the two events are sawteeth and consider the pre-

crash value of q0 as a parameter in the range of 0.8 ≤ q0 ≤ 1. Other relevant plasma

parameters were B0 = 0.36 T, β0 = 11%.

TRANSP calculations21 show that the population of beam ions in the shot #104505

consists mainly of particles with large longitudinal velocity χ > 0.5. Calculations with the

code ORBIT show that such particles are toroidally passing (i.e., v‖ does not change the sign

during their orbital motion, although turning points dθ/dt = 0 can exist, i.e., the particles

can be “semi-trapped”). Taking this into account, below we concentrate on particles with

relatively small λ.

We assume that the crash duration considerably exceeds the particle transit period (the

latter is about 3 × 106 s). Then the electromagnetic perturbation relevant to the crash is

approximately constant for many transit periods. This justifies the study of the particle

motion in a steady-state magnetic configuration corresponding to a certain stage of the

crash, which will be done below.

In order to study the crash-induced particle transport, we use the code OFSEF.3 This code

calculates the particle orbits in a magnetic configuration modeling the Kadomtsev type of the

sawtooth crash. It supposes that the plasma equilibrium before and after the crash is rather

simple (elliptic flux surfaces, no Shafranov shift, no paramagnetic and diamagnetic effects on

the magnetic field strength). Because of this, the code underestimates the precession rate.

Therefore, we have modified this code by adding terms modeling the precession. First of all,

we included effects of the plasma pressure on the particle drift motion (the “diamagnetic

precession”): the finite pressure terms may play an important role even for moderate β
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because large local pressure gradients appear during the reconnection. This was done by

introducing the additional diamagnetic drift given by (cf. Ref. 11)

vdia = − 4πµ

MB2ωB

B ×∇p, (31)

to the particle motion, where µ is the particle magnetic moment. In addition to this drift,

the particles undergo the “conventional precession”, i.e., the precession not associated with

pressure gradients. One can expect that such precession is weakly affected by magnetic

perturbations (even the poloidal magnetic field weakly changes because of a typical sawtooth

crash) and tends to move the particles across the perturbed flux surfaces.11,12 To take account

of such precession in OFSEF, we calculated the precession of various 80-keV deuterons with

the Hamiltonian guiding-center code ORBIT,4,5 using realistic equilibria of the shot #104505

(see Appendix A). The results of these calculations were considered as the conventional

precession and incorporated into the code OFSEF. However, we should note that the study

of the precession in the unperturbed state is not sufficient for the real description of the

precession during the crash. The matter is that the magnetic configuration is strongly

non-axisymmetric during the crash. In addition, as follows from an analytical formula

for the precession frequency [Eq. (A2)], the role of the terms that depend on the plasma

pressure in the mentioned formula is quite considerable and can even be dominant in the shot

#104505. This implies that the ORBIT calculations overestimate the role of the conventional

precession (it is not possible to subtract the precession caused by the pressure) and does not

take into account the peculiarities associated with the absence of the axial symmetry during

the crash. For this reason, we investigated the particle transport with OFSEF modified as

described above for two cases: with the ORBIT precession term (which overestimates the

conventional precession) and without it (which underestimates the conventional precession).

We studied the particle motion by calculating Poincaré maps at a certain (non-linear)

phase of the crash for various q0. Because the perturbation amplitude depends on q0 (the

transversal component of the magnetic field perturbation is proportional to |1 − q| inside

the q = 1 radius for small β), the cases with q0 approaching unity correspond to weaker

perturbations. Therefore, as expected, we found that the particle motion is mainly regular

when q0 is sufficiently close to unity (see Fig. 3, where the results of calculations for q0 =

0.95 are presented). Being mainly regular, the pictures in Fig. 3 (a) and Fig. 3 (b) are,

nevertheless, different. There is a wide resonance island in the absence of the conventional
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precession term, and the particle motion is strongly perturbed. In contrast to this, the

presence of the conventional precession term leads to motion with the radial coordinate

being almost constant, and the resonance island is not noticeable.

A decrease of q0 increases the island width and the stochasticity domain. In particular,

the stochastic region dominates for q0 = 0.8 when the precession is negligible [Fig. 4 (b)].

When the conventional precession is on [Fig. 4 (a)], the island width is smaller, but the island

is shifted outwards, which agrees with the qualitative consideration in Subsec. III B. The

shown results are relevant to particles with λ = 0.58. The results for λ = 0.1 and q0 = 0.8

are presented in Fig. 5. The picture in Fig. 5 (b) is similar to that in Fig. 4 (b), which means

that the particle redistribution weakly depends on the particle pitch angle when precession is

slow. In contrast to this, the increase of the pitch angle in the presence of strong conventional

precession enhances the particle redistribution, as follows from Fig. 5 (a). In addition, in

Fig. 5 (a) we observe a chain of secondary islands, which partly lies outside the mixing

region due to the finite orbit width. Hence, we can conclude that the crash considerably

redistributes toroidally passing particles, at least, when q0
<∼ 0.9 or when q0 > 0.9 and

precession is weak.

In order to see whether the particle redistribution in accordance to Figs. 3–5 can lead

to the escape of the particles to the wall, we have investigated the unperturbed particle

motion with the ORBIT code. The results are summarized in Tables I and II. It follows

from these tables that particles with the considered pitch angles (0.1 ≤ λ ≤ 0.58) are not

confined when rmin/a ∼ 0.4−0.5, where rmin is the minimum radius of reached by the particle

during its orbital motion. This implies that in the considered case of rmix/a ∼ 0.6− 0.7 the

particles can be lost as a result of the crash-induced stochastic motion to the region where

rmin/a ∼ 0.4− 0.5.

V. SUMMARY AND CONCLUSIONS

We have evaluated the change of the beam-plasma fusion reactivity during an MHD event

for various patterns of the redistribution of the beam and plasma particles. The result was

that if no beam ions are lost, the change of the reactivity is considerably less than the drops

of the neutron yield observed during sawtooth crashes in NSTX. This implies that sawtooth

oscillations in NSTX are accompanied by a loss of a considerable fraction of the beam ions.
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In particular, a derived equation for the change of the fusion reactivity predicts a 30% loss

of the beam ions in the case when the radial profile of the beam after the crash is flat and

the neutron yield drops by a factor of two.

In order to explain the strong influence of sawtooth crashes on energetic ions, we analyzed

possible mechanisms of this influence and made a numerical simulation of the motion of beam

ions during a sawtooth crash in NSTX.

With this purpose, we evaluated the characteristic times of the beam ion motion. It was

concluded that the ωφ/ωθ = m/n = 1/1 resonance plays an important role unless the toroidal

precession is so strong that the island width becomes very small. The resonance adiabatic

invariant describing the bounce-averaged particle motion near the 1/1 resonance was derived.

Based on this invariant, a general picture of the motion of the toroidally passing particles

in the crash field with relatively small amplitude (when the particle motion is regular) was

elucidated. A conclusion was drawn that the motion along the resonance islands can lead to

significant losses of beam ions during sawteeth when the island width and the mixing radius

are sufficiently large.

A numerical study of the motion of 80-keV deuterons during a sawtooth crash in the

NSTX shot #104505 was carried out by the OFSEF code. The latter was modified to model

the precession better: the precession of passing particles is very sensitive to the plasma

shaping, β, the radial profile of the plasma pressure etc. The precession in MHD-quiescent

states preceding sawtooth crashes was calculated with the ORBIT code. However, this was

not sufficient to know the precession during the crashes because of the uncertainty with the

contribution of large pressure gradients during the field line reconnection. Therefore, the

OFSEF calculations were carried out for two cases: first, with the term modeling the con-

ventional precession and based on the ORBIT results (which overestimates such precession);

second, without the mentioned term (which underestimates such precession). It was found

that the particle motion can become stochastic in both cases. The most probable mechanism

of the stochasticity is the overlap of resonance islands, in particular, secondary islands near

the separatrix of the 1/1 resonance and islands produced through the nonlinear mechanism

described in Ref. 15 (the particles in the near-axis region are “small-action particles”, which

can be stochastized in the presence of a monochromatic m = n = 1 perturbation15).

The model precession term reduces the stochastic region. This can be explained by the

fact that strong toroidal precession diminishes the width of resonance islands, which prevents
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them from overlap. Because the perturbation amplitude decreases with (1 − q0), the role

of stochasticity is larger for lower q0. In particular, when q0 = 0.8, the calculation without

the model term predicts almost completely stochastic motion of toroidally passing particles;

with this term, the motion of many particles is stochastic, too, but a considerable number of

particles moves regularly along the resonance island. When q0 approaches unity, the particle

motion is mainly regular, but the resonance island is significant only in the absence of the

model term; in the contrary case, the particle orbits are weakly deflected from the r = const

flux surfaces.

It follows from our numerical simulations of the particle motion in the NSTX shot

#104505 that the crash results in a flattening of the beam ion distribution and a loss of the

particles that enter the loss region. The latter was calculated with the code ORBIT.
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APPENDIX A: ORBITAL MOTION OF BEAM IONS IN NSTX: CHARACTER-

ISTIC FREQUENCIES, PRECESSION, ESCAPING PARTICLES

In this Appendix we describe the results of calculations of the orbital motion of 80-keV

deuterium ions in the shot # 104505. The calculations were carried out with the Hamiltonian

guiding-center code ORBIT.4,5

Figure 6 shows the dependence of the calculated ratio of ωφ/ωθ on the average radial

position of the particle, 〈r〉 =
∮

dt r/τb, for various magnitudes of the normalized magnetic

moment, λ = µB0/E . Here the radial coordinate, r, is defined as the equatorial half-width

of the corresponding flux surface. One can see that ωφ/ωθ significantly differs from q shown

in Fig. 2, which shows that the toroidal precession is rather strong.
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It is of interest to compare the precession calculated by ORBIT with analytical pre-

dictions. It was shown recently22 that in the near-axis region, where q is approximately

constant and the pressure profile is approximately parabolic, the precession frequency of

well circulating particles (for which λε ¿ 1− λ) is

ωD ≡ ωφ − q0ωθ = ξ
v2

R2
0ωB0

, (A1)

where

ξ =
q0

k

[
1− 3

2
λ + 3

8
λ2

1− λ
− (2− λ)

4k2 + 1

3k2 + 1
− λ

2
α̃p − (2− λ)

2q2
0α̃p

3k2 + 1

+ (2− λ)
k2 + 1

4q2
0

− (2− λ)
k2 − 1

3k2 + 1

3δR0

2r

]
(A2)

is a dimensionless parameter depending on the magnetic configuration and λ, δ is the tri-

angularity of the flux surfaces, α̃p = −R2
0dβ̂/d(r2), β̂ = 8πp/B2

0 . The first two terms in the

square brackets in Eq. (A2) represent the joint effect of toroidicity (including the Shafra-

nov shift not associated with the plasma pressure) and the elongation of the flux surfaces.

The third term shows the effect of the plasma diamagnetism or, in other words, of the ra-

dial gradient of B arising from the plasma pressure gradient due to the pressure balance.

The fourth term represents the effect of the Shafranov shift caused by the plasma pres-

sure. Finally, the fifth and sixth terms are associated with the plasma paramagnetism and

triangularity, respectively.

Table III contains ξ calculated with ORBIT for the moments t = 0.155 s and t = 0.185 s

and the same quantities following from Eq. (A2), including the contributions from separate

terms of this equation. We selected for this table the data concerning semi-trapped particles

(i.e., circulating particles not encircling the magnetic axis) with λ = 0. The reason was that

the deviation from the magnetic axis is the smallest for such particles; therefore, one can

expect that Eqs. (A1) and (A2) are best applicable for them. Note that the calculations for

different magnitudes of λ in the range of 0 ≤ λ ≤ 0.6 gave almost the same results as the

dependence of ξ on λ is weak. We observe that ξ calculated with ORBIT is not constant for

semi-trapped particles, which cannot be the case in the adopted analytical approximation.

In addition, the analytical theory yields negligible precession for t = 0.185 s in contrast

to ξ = −0.3 ÷ −0.45 given by ORBIT. Detailed analysis shows that these disagreements

between the analytical and numerical results are explained mainly by the fact that the

pressure profile on the radial interval occupied by the considered orbits strongly deviates

21



from the parabolic shape assumed in the analytical theory (the radial derivative of p even

changes the sign near the magnetic axis for t = 0.185 s).

One can infer from Table III that precession during a magnetic reconnection, when the

plasma is not axisymmetric, can be predicted only with large uncertainty. The reason for

this is the relatively large contribution to precession from the pressure-produced Shafranov

shift. The other terms of Eq. (A2) are determined by the general geometrical properties

of the configuration and, therefore, can be assumed to be weakly affected by a magnetic

reconnection (note that the poloidal magnetic field is rather weakly perturbed by a sawtooth

crash;8 the relative perturbation of the toroidal magnetic field in a pressureless plasma is

even weaker). In contrast to them, the terms associated with the plasma pressure can be

expected to change drastically during a plasma mixing. This may result in a difference

between the precession in the unperturbed axisymmetric plasma and the precession during

a reconnection event.

We also used ORBIT to estimate the size of the loss cone in the considered shot. With

this aim, orbits that touch the plasma boundary at the outermost point were calculated for

various λ. The results are presented in Tables I and II. One can see that the minimum radial

coordinates of the marginally confined circulating particles are typically below 0.5a, which

means that the magnetic reconnections that reach r = 0.5a can well expel the particles

to the wall. These calculations also revealed that trapped particles (i.e., the particles that

change the sign of v‖ in the course of their motion) are confined only for λ > 1.

APPENDIX B: ADIABATIC INVARIANT OF RESONANT GUIDING-CENTER

MOTION

The derivation procedure in this Appendix is rather similar to that in Ref. 19. The only

difference is that here we are not interested in cyclotron resonance and study the particle

motion in the guiding-center approximation.

We proceed from the following guiding-center Lagrangian:23

L(x, v‖, ẋ) =
e

c
A(x) · ẋ +

Mv‖
B

B(x) · ẋ− (E + eΦ), (B1)

where x is the particle position, A and Φ are the vector and scalar potentials of the elec-

tromagnetic field, respectively; E = Mv2
‖/2 + µB(x) is considered as a function of x and

22



v‖. Note that here we have omitted the term responsible for the gyrophase evolution (which

does not affect the motion of the guiding center) and treat µ as a constant parameter. Thus,

the number of the degrees of freedom of the system has decreased to two.

We present the magnetic field as a sum of the axisymmetric equilibrium field and the

perturbation: B = B(0) + B̃. Neglecting the equilibrium electric field, we choose the gauge

so that Φ in the unperturbed state is zero. The unperturbed motion has a sufficient set

of constants of motion (E and the toroidal canonical angular momentum). Therefore, the

Lagrangian of the unperturbed guiding-center motion,

L(0)(x, v‖, ẋ) =
e

c
A(0)(x) · ẋ +

Mv‖
B(0)

B(0)(x) · ẋ− E , (B2)

can be written in the action–angle form:

L(0) = J1ς̇1 + J2ς̇2 − E(J1, J2), (B3)

where ς1 and ς2 are the poloidal and toroidal canonical angles, respectively, which depend

linearly on time along the trajectories: ς̇i = ωi(J1, J2), i = 1, 2; ω1 = ωθ; ω2 = ωφ; J1 and J2

are the corresponding canonically conjugate actions. One can show14 that J1 = Jθ is given

by Eq. (28), J2 = Jφ, and the canonical angles are given by

ς1 = ωθ

∫ θ

0

dθ/θ̇, ς2 = φ− υ(ς1), (B4)

where υ ≡ ∫ ς1
0

dς1 (φ̇− ωφ)/ωθ.

The main idea of our further calculation is the following. Studying the perturbed motion

in the vicinity of a separate resonance, n1ω1 + n2ω2 = 0, where n1 and n2 are certain

integers, we can divide the variables into “slow” variables (the actions and the “resonance”

combination n1ς1+n2ς2) and “fast” ones. In our case, there is only one fast variable left, and

any linearly independent combination of the angles can be chosen as this variable (we will

take the poloidal angle, ς1, for this purpose). We will average the motion by the fast variable,

which, in effect, is bounce averaging. To perform the averaging, we will employ the method

of Lie transformations of the Lagrangian,24 looking for such a coordinate transformation that

the transformed Lagrangian is independent on the fast variable to required order. Then the

quantity that is canonically conjugate to the new fast coordinate is an approximate constant

of motion – that is, an adiabatic invariant.
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To implement this program, we introduce new canonical angular coordinates by the linear

transformation

α = Qς, (B5)

where ς = col(ς1, ς2), α = col(α1, α2) is the vector of the new angles, and

Q =

∥∥∥∥∥∥
n1 n2

1 0

∥∥∥∥∥∥
. (B6)

One can see that the coordinate α1 is chosen so that it is constant at the considered res-

onance. Instead of the Lagrangian, it will be convenient to use the Lagrangian differential

form γ(0) = L(0) dt, which in the new coordinates takes the form

γ(0) = I · dα− E dt, (B7)

where I = (QT )−1J, J = col(J1, J2). Below we will consider I1 and E as independent variables

and I2 as a function of the I1 and E (this choice could be different).

Calculating the difference L − L(0) to first order in the perturbation amplitude from

Eqs. (B1) and (B2), we see that the first-order correction to γ ≡ L dt is

γ̃ =
e

c
Ã · dx + M

v‖
B

B̃ · dx−M
v‖
B2

B̃B · dx− µB̃ dt− eΦ dt (B8)

where B̃ = B · B̃/(2B) is the perturbation of B.

Now we will use the assumption that α1 is a slow variable near the resonance. Varying

Eq. (B7) to obtain the Euler–Lagrange equations, it is easy to find the frequencies of the

unperturbed motion. In particular, we obtain

α̇1 = −
(

∂I2

∂E
)−1

∂I2

∂I1

. (B9)

We conclude that ∂I2/∂I1 is small (and vanishes at the exact resonance). Therefore, we split

I2 into two parts, I2 = I20(E) + εI21(I1, E), where I20(E) is I2 with the argument I1 taken

at the exact resonance, ε is the ordering parameter (in the end we will set ε = 1 to obtain

physically meaningful results). The perturbation is also assumed to be ∼ ε. We obtain the

following presentation for γ:

γ = γ0 + εγ1, (B10)

where

γ0 = I1 dα1 + I20(I3, E) dα2 − E dt, (B11)
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γ1 = I21(I1, I3, E) dα2 + γ̃. (B12)

Note that all slow variables (I1, E , and α1) are constants of motion of the Euler-Lagrange

equations resulting from γ0.

Now we proceed to the averaging procedure. Following Ref. 24, we look for a Lie transfor-

mation z̄ = exp(εG)z that makes the differential form independent on fast variables, where

z = (α1, α2, I1, E , t) is the vector of the variables, z̄ is the vector of the corresponding new

variables free of rapid oscillations to the first order, G is the transformation generator. The

components of the differential form γ1 in the new variables look as follows:24

γ̄1j = γ1j −Giwij + ∂jS, (B13)

where S is an arbitrary function of z; subscripts and superscripts denote co- and contravari-

ant components, respectively; wij = ∂iγ0j − ∂jγ0i are the Lagrange brackets among the

coordinates z in the system γ0 (note that perturbations of the magnetic field modify the

simplectic structure of the phase space and, in particular, the Lagrange brackets); and sum-

mation over repeating indices is implied. Then the averaging reduces to solving Eq. (B13)

for Gi and S, so that γ̄1j have the desired form. Specifically, we demand that all γ̄1j should

vanish except for j = α2 and that γ̄1α2 should not depend on the fast variable α2.In addi-

tion, we set Gt = 0 (the time variable should not be modified by the transformation). The

procedure of solving is omitted here because it is very similar to that in the case of three

degrees of freedom, which was presented in Ref. 19 (Appendix B). We obtain:

γ̄1α2 =
1

2πn2

∮

L(α1,Jφ,E)

γ1, (B14)

where L(α1, Jφ, E) is the closed loop determined by the equations −n2π ≤ ς1 ≤ n2π,

ς2 = (α1 − n1ς1)/n2, Jφ = const, E = const. This loop is, in fact, an unperturbed par-

ticle trajectory with the toroidal frequency, ω2, modified to satisfy the resonance condition

exactly.

Using Eqs. (B11), (B12), and (B14), we obtain the averaged Lagrangian:

L = Ī1 · ˙̄α1 + I(ᾱ1, Ī1, Ē) ˙̄α2 − Ē , (B15)

where

I(ᾱ1, Ī1, Ē) = Ī2 +
1

2πn2

∮

L(α1,Jφ,µ,E)

γ̃ (B16)
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is a constant of motion of the averaged system (we have already set ε = 1). On the other

hand, the difference between the coordinates (ᾱ1, ᾱ2, Ī1, Ē) and (α1, α2, I1, E) can result only

in adiabatic variations of the “non-averaged” variables (α1, α2, I1, E). Due to this, I given

by Eq. (B16) and considered as a function of (α1, I1, E) is a new adiabatic invariant – the

resonance adiabatic invariant that we have intended to obtain. Substituting γ = L dt from

Eq. (B1) and expressing I2 in terms of J, we obtain the following expression for the resonance

adiabatic invariant:

I = Jθ(Jφ, E)− n1

n2

Jφ

+
1

2πn2

∮

L(α1,Jφ,E)

[
dx ·

(e

c
Ã + M

v‖
B

B̃−M
v‖
B2

BB̃
)
− dt (µB̃ + eΦ)

]
. (B17)

Equation (B17) is a generalization of a previous result,14 which was obtained for perturba-

tions that do not affect B, to the case of general time-independent perturbations. In the

particular case of the resonance ωφ/ωθ = 1/1 the obtained resonance is reduced to Eq. (27).
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TABLES

TABLE I: Parameters of marginally confined co-circulating orbits (i.e., the co-circulating orbits for

which R + ρ⊥ ≈ Rmax in the outermost point of the orbit, where ρ⊥ = v⊥/ωB, Rmax = 148.9 cm is

R at the outermost point of the plasma boundary) for t = 0.155 s.

λ minimum r/a parameters at the outermost point of the orbit (θ = 0)

(r/a for θ = π) r/a R, cm ρ⊥, cm

0.1 0.51 0.85 143.3 6.0

0.2 0.47 0.80 140.8 8.5

0.3 0.44 0.76 138.9 10.3

0.4 0.40 0.72 137.2 11.8

0.5 0.37 0.69 135.8 13.1

0.58 0.34 0.67 134.8 14.1

TABLE II: The same as Table I but for t = 0.185 s (Rmax = 153.7 cm).

λ minimum r/a parameters at the outermost point of the orbit (θ = 0)

(r/a for θ = π) r/a R, cm ρ⊥, cm

0.1 0.54 0.84 147.7 6.2

0.2 0.50 0.79 145.2 8.7

0.3 0.47 0.75 143.3 10.6

0.4 0.44 0.72 141.5 12.2

0.5 0.41 0.70 140.5 13.6

0.58 0.38 0.67 139.3 14.6

TABLE III: Comparison of the coefficients ξ calculated by ORBIT and analytically for semi-trapped

particles with λ = 0.

t, s ξ from ORBIT ξ from Eq. (A2) Contributions from separate terms of Eq. (A2)

1st and 2nd 3rd 4th 5th 6th

0.155 −1.05÷−1.45 −1.1 −1.2 0 −0.6 0.9 −0.2

0.185 −0.3÷−0.45 0.0 −1.1 0 0.1 1.1 −0.1
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FIG. 1: Crossings of drift surfaces of 80-keV deuterons during a sawtooth crash with the equatorial

plane for λ = 0.51, β0 = 0.11, R0 = 100 cm, a = 68 cm, rmix = 50 cm, B0 = 0.36 T, q0 = 0.9, qa =

10. (a), ξ = −0.01; (b) ξ = −0.2. 1, the 1/1 resonance island; 2, displaced central particles. Each

drift surface is shown twice, the left and right crossings with the equatorial plane corresponding

to the parts of the particle orbits with the minimum and maximum distances from the magnetic

axis, respectively. The pictures are obtained with the use of the invariant given by Eq. (27).
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FIG. 2: The q(r) profile calculated by TRANSP for the NSTX shot # 104505.21 Dashed line,

t = 0.155 s; solid line, t = 0.185 s.
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FIG. 6: The radial dependence of ωφ/ωθ calculated by the code ORBIT for various λ in the NSTX

shot # 104505. 4, λ = 0; ♦, λ = 0.4; ¤, λ = 0.58. Dashed lines, t = 0.155 s; solid lines, t = 0.185 s.
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